如何判定“AI艺术”的著作权和所有权?

发布时间:2019-03-15 发布者:亚时中文网

过去一些年来,许多艺术家开始使用所谓“神经网络软件”(neural network software)创作艺术品。


用户将现有的图像输入软件,经过编译的软件具有分析功能,习得了一套特定的美学,可以输出图像供艺术家展出。透过微调输入和模型的参数,艺术家就能创造出一系列有趣且引人浮想联翩的图像。这件作品在美术展、媒体报道及两场高规格的拍卖会中获得了广泛的承认。


身为一名学术研究者、艺术科技开发者和业余艺术家,眼见艺术家们纷纷拥抱新技术来创造新的表达形式,我时常感到激动万分。不过,与先前一系列打破成规的艺术运动类似,神经网络艺术也引发了许多难题:当艺术作品来自如此多的富有创意的个人和算法时,我们应怎样来构想它的著作权和所有权?我们如何保证公平对待参与其中的所有艺术家?


新生的运动


方兴未艾的神经网络艺术世界是过去几年才流行起来的,它部分地得益于计算机科学的发展。


它始于2015年的项目“深度梦境”(Deep Dream),该项目是一名谷歌工程师于不经意间开发的。他想要找到一种方法,将用作图像分析的神经网络系统的工作成果加以视觉化。为实现这一目的,他首先输入了一部相册,并指示它增加其在图像里发现的对象之部件的数目。其结果是产生了一大堆古怪而又引人遐想的图像。他将这种方法分享到了网上,艺术家们很快就拿它来做了实验。他们不到一年即成功举办了第一场“深度梦境画展”。


鉴于该软件在线上完全免费,数位艺术家们可以用其中的模型来做实验,进而分享自己的结果和修改。推特上有一个相当活跃的、由神经网络艺术家组成的创意社群,专门讨论实验结果、新近的发展与争议等。主流艺术家当中的大部分人也接受了这些工具,其中包括一些主要的展会和组织的带头人,如特雷沃·帕格伦(Trevor Paglen)、瑞斐克·安纳多(Refik Anadol)和杰森·萨拉翁(Jason Salavon)等。


《埃德蒙·德·贝拉米,来自贝拉米家族》


然而,这种公开的分享也挑战了我们思考艺术的方式。《埃德蒙·德·贝拉米,来自贝拉米家族》(Edmond de Belamy, from La Famille de Belamy)于2018年11月在佳士得拍卖行卖出了将近50万美元的天价,这似乎暗示着一些错漏。


为什么?在创作这幅画的过程里,艺术家组织“显著”(Obvious)使用了另一名艺术家卢比·巴拉特(RobbieBarrat)在网上免费分享的源代码和数据。“显著”拥有全权来使用巴拉特的代码,并声称拥有作品的著作权。然而,许多人对佳士得拍卖行提出了批评,理由是过度拔高了那些在作品创作过程中仅有较小贡献的艺术家。大家普遍都认为这件事是佳士得的过错,聚焦于批评它推介这件作品的方式有误导性,但没有多少人去反思AI艺术的著作权问题。


Ganbreeder的诞生


这些问题在网站Ganbreeder上面变得无可逃避了,这是一家新建立的、颇具吸引力的神经网络画像创作网站。Ganbreeder就好比是一座无尽的宝库,其中满是各种富有启发、引人入胜、稀奇古怪且令人神魂颠倒的影像。“深度梦境”的图像很快就表现出了重复性,而Ganbreeder的原创影像则极为丰富多样,看上去根本无法单凭某一个人的脑子而创作出来。


乔尔·西蒙于2018年11月创办了Ganbreeder网站。上面的每一幅图片都是由用户在修订其它图片参数的基础上自行选择输入参数来创作的。该网站储存了创作过程里的每一张图片,如此一来用户可以看到最终那幅图片的所有贡献者。


如果你喜欢自己某张自己发现或创作的图片,你可以从兼具企业主和艺术家身份的丹尼埃尔·巴斯金(Danielle Baskin)那里订做一幅定制版的木版画。她会给印好的画上色,但不会在上面签名,而是在作品的背面打上二维码,扫描它即可知晓这幅画的独特创作谱系。她之所以这么做,是因为每幅图片都是许多人贡献的成果,这就令人很难单单用某一个艺术家的名字来为每一件新作冠名。


让创作者得其所应得


不过,有一个艺术家已经给它冠上了自己的名字。


在亚历山大·瑞本(Alexander Reben)展出自己以Ganbreeder的图片创作而成的画作时,巴斯金指控他有剽窃之嫌,理由是她和其他人在Ganbreeder上面花费了大量时间来创作那些图片。瑞本则为自己提出辩护,称自己在Ganbreeder上面选择作品时发现它们都是匿名的——用户的登入和贡献到了2019年2月才被加入进去。


现行的法律和习俗已经对通过合作或重新合成等形式完成的艺术作品有所涉及。有一点是广为接受的,那就是艺术家可以选择一张最终的图片来主张著作权,虽然在可能的情况下,他也必须事先表明图片的来源。而那些有关剽窃的指控,似乎只是在拙劣地模仿以往针对那些传统的挪用艺术家(appropriation artist)如安迪·沃霍尔和理查德·普林斯(Richard Prince)的指控,后者以扩大和修改其它Instagram用户上传的图片而知名。


Ganbreeder网站上的一些近期作品 图片来源:Ganbreeder


话说回来,神经网络作品似乎是另一种类型。神经网络模型和网站上的其他用户所做出的贡献,与最终的结果都密不可分,没有哪一个贡献者可以成为唯一的“艺术家”。


一种看待这些新型艺术作品的可能方式,是将其视同为开源软件。开源乃是一种软件开发模式,任何人都可以贡献于或者使用开源的软件包。它令许多主流的软件工具得以诞生,如Linux和一些主要的神经网络软件等,它们都无法以其它方式得到开发。与此类似,新的神经网络艺术作品如果没有公开分享的软件和数据,那也是不可能问世的。


开源项目有明确的规则来规定软件的用途和冠名权:有些软件可以被扩展或者售卖,其它一些则必须永远免费分享。每个编程者的贡献都被记录下来,至于如何冠名也取决于具体项目的要求。与开源软件类似,诸如Ganbreeder之类的网站也可以制定明确的规则来处理艺术作品著作权和贡献者的界定等问题。其指导方针应该明确几条:如何对一件作品主张自己的贡献,其他哪些人的贡献必须被记录在内,作品在什么情况下可以被售卖或者申请版权保护。


收费是个比较微妙的问题。Ganbreeder上面的图片如果被用于商业用途——譬如书籍封面或是电影制作怎么办?为了鼓励更多的世界性的贡献,巴斯金建议所收取的费用应由某作品的所有贡献者来分享。这是一件利润可观的事,一个规格稍高一点的广告项目就足以解决很多艺术家的温饱需求。


一种“想象物的摄影术”


接下来就是价值和意图的问题。这些作品有没有可能跻身伟大作品的行列?


艺术作品价值里的一部分仅在于其内在的审美属性,比如一座山的状貌可能是美的。但我们赋予艺术作品价值的原因还有一个,那就是它源自某位艺术家的洞见、意图和技巧。


开源的艺术作品大约介于两者之间。这一图像代表着许多人运用其心灵所作出的深思熟虑的艺术选择。但意图又在哪里呢?显然,某个早期贡献者根本不知道后来者会如何使用他们的作品。


这是否有点像问一座美丽的山背后有什么意图?做出最终决定的那名艺术家是否是意图的唯一来源?


早先的艺术科技也引发了同样问题,尤其是摄影术的发明。在媒介(medium,即艺术家从事创作时用于艺术表现的物质手段——译注)最初出现时,很多人宣称摄影根本就不是什么艺术。他们主张,说到底是机器完成了所有的工作——这种情绪如今又在诸如“AI创作了自己的艺术”之类的谬论上故态复萌。


摄影术花了好一阵子才最终被承认为自身的艺术媒介。此外,透过迫使艺术家不再盲目崇拜现实主义,它还充当了现代艺术运动的催化剂。鉴于论现实主义他们根本不可能与相机镜头相匹敌,他们需要找寻新的途径来创作单纯的机器所无法复制的作品。


神经网络艺术现在是一种想象物的摄影术(photographyof imaginary things)。


与摄影术类似,神经艺术几乎可以产生无限组图片,其中的每一张就其自身而言都难说有多少价值。价值来自于艺术家们使用这些工具的独特方式——例如怎样设定参数、选择主题、调整图像细节,或是以一整套具有更大意义的图片来开办展览。


鉴于新神经模型的发布速度十分惊人,这些问题只会更加紧迫,而更多兼具美妙、古怪与启发性的图像也会不断涌现。(完)


文章来源:界面新闻

特别声明:本站转载或引用之图文若侵犯了您的合法权益,请与本站联系,本站将及时更正、删除。版权问题及网站合作,请通过亚时财经邮箱联系:asiatimescn@sina.com

热门话题更多>>

推荐文章

更多>>

扫一扫手机阅读

ATimesCN手机网站